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a b s t r a c t

This study presents an analytical model of the dynamics of an axisymmetric liquid bridge confined
between two circular pads and subjected to small vertical periodic perturbations. Such system finds
important applications in microassembly and microjoint design, where force and damping need to
be precisely controlled. The liquid bridge is modelled by an equivalent spring/dashpot/mass system
characterised by the spring constant k, the damping coefficient b and the equivalent massm, respectively.
An abacus for k as well as analytical approximations for k, b and m based on simplifications of the
Navier–Stokes equation are provided. The study is validated by experiments and numerical simulations
of the system. We describe the experimental setup we designed to investigate vertical forces arising on
the bottom pad from small periodic perturbations of the top pad confining the liquid meniscus. The setup
allowed the accurate control of all physical and geometrical parameters relevant for the experiments. The
parameters we investigated are both physical (viscosity and surface tension of the fluid) and geometrical
(the edge angle between the meniscus and the pad, the height of the meniscus). The good agreement
between model predictions and results let us conclude that k, b andm involve only one physical property
of the liquid, namely the surface tension, the viscosity and the density, respectively.

© 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

Liquid bridges are liquid volumes confined between two solid
surfaces and surrounded by another fluid (most commonly, air).
Mechanically, liquid bridges can be considered as joints between
two solids (e.g. a substrate and a component). Upon perturbation,
they generate capillary forces that can be repulsive or attractive
depending on several properties of the fluid and the bounding
solids. These properties are both geometrical and physical [1–3].

Forces generated by liquid bridges are ubiquitous, and techno-
logically relevant for e.g. flip-chip electronic assembly [4–6] and
capillary self-assembly of micro- and nanosystems [7,8]. Analyti-
cal models and quasi-static numerical simulations – typically per-
formed through Surface Evolver [9] – for such applications are
widely reported [3,10]. Different degrees of freedom are thereby
strained, and the restoring forces or torques are computed. Al-
though fully three-dimensional, these numerical models do not
contemplate dynamics.

Dynamical studies were introduced by van Veen [11] and
Meurisse and Querry [12]. They proposed analytical models for
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dynamical parameters and restoring forces, and for the pressure of
the liquid bridge as a function of the inverse of its gap, respectively.
Cheneler et al. proposed an analysis of a liquid bridge to develop a
micro-rheometer [13]. The liquid ismodelled as a dashpot in series
with a calibrated spring/mass system. By measuring the phase
shift between the position of the mass and the force exerted, the
friction can be deduced. However, inertial effects are not included
in the model, and the study is not supported with experimental
data.

Engmann et al. [14] presented a comprehensive review of
main analytical expressions of viscous force corresponding to
several squeeze film configurations, e.g. through slipping, non-
slipping, viscoelastic, viscoplastic. In particular, the expressions of
the viscous term developed by Pitois et al. [15] can thereby be
recovered.

Concerning numerical simulations, Boufercha et al. [16] es-
timated the time response and the position error of a self-
positioning process of a chip on a substrate. The simulation
includes the motion of a liquid drop crushing a substrate made
of hydrophobic and hydrophilic regions, and the squeezing of the
drop by the chip. Lu and Bailey [17] devised a model to determine
the timescale of a chip self-alignment process. Their approach con-
sists in coupling the motion of the solder driven by the chip, and of
the chip itself. The coupling is justified by the identical timescales
of themotion of both elements. They concluded that the usual, un-
coupled model underestimates the impact of viscosity.

http://dx.doi.org/10.1016/j.euromechflu.2012.09.008
http://www.elsevier.com/locate/ejmflu
http://www.elsevier.com/locate/ejmflu
mailto:jvalsami@ulb.ac.be
http://dx.doi.org/10.1016/j.euromechflu.2012.09.008
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Fig. 1. Degrees of freedom for a liquid bridge between a couple of solid interfaces.
The substrates refer to generic solid surfaces. They can belong to a couple made
of e.g. a gripper (top) and a component (bottom), or of a component (top) and a
substrate (bottom).

Other problems involving the free liquid surface were ad-
dressed in a rather different way by Montanero [18,19]. He stud-
ied the possible oscillations of an air/liquid interface. In this case,
the deformation is due to the inertia of the fluid, and fluids of low
viscosity are required. Beyond the theoretical consideration of in-
ertial effect, the vibration of the interface loses interest in the prob-
lem addressed in the presentwork. As itwill be shown, the effect of
the capillary force is completely negligible at frequencies forwhich
the shape of the free interface presents wavelets. Finally, dynam-
ical studies of lateral forces of liquid bridges were conducted by
Lambert et al. [20], including the effect of viscosity as well as free
surface forces.

In this paper,we consider an axisymmetric liquid bridge period-
ically excited along its vertical axis. The dynamic behaviour of the
liquid bridge is modelled by an equivalent spring/dashpot/mass
system characterised by the spring constant k, the damping coef-
ficient b and the mass m. The study provides an abacus and ana-
lytical approximations (bymeans of both a parabolic and a circular
model) for k, as well as analytical laws for b and m. The analytical
predictions are compared with experiments and numerical simu-
lations. The good agreement obtained allows us to confirm the as-
sumptions of the model, described in the following section.

2. Liquid bridge model

When the substrate (bottom solid) is fixed, the component
(top solid) standing on top of the liquid bridge has six degrees of
freedom with reference to the substrate: three translational and
three rotational (Fig. 1). For small periodic perturbations along
the degrees of freedom, the dynamic response of these degrees
of freedom may be decoupled into six frequential responses. The
responses can be described in several ways, depending on how the
system is excited (the input) on one hand, and on how the effect of
the excitation (the output) is passed on, on the other.

This study focuses on the translational degree of freedom along
z (defined in Fig. 1). The liquid bridge is pinned by two circular
and parallel interfaces providing an axially-symmetric geometry
around the z axis. All liquid bridge dimensions are smaller than
the liquid capillary length.

2.1. Edge angle

As described later, the bounding plates of our experimental
setup present sharp edges to ensure the pinning of the liquid.
Fig. 2. Pinning of the triple contact line. When the liquid is pinned on a sharp edge,
the edge angle can be higher than the advancing contact angle.

Fig. 3. The Kelvin–Voigt model. Forces fk(t) and fb(t) represent the force of the
spring and of the dashpot, respectively, while f (t) represents the total force exerted
by liquid bridge on the system. Origin is assumed at the free length position. The
direction of forces are represented for a stretched spring x(t) > 0, upwards velocity
ẋ(t) > 0 and upwards acceleration ẍ(t) > 0.

Liquid pinning avoids the motion of the triple contact line, and af-
fords the advantage of a less constrained edge angle. Indeed, con-
sidering a planar surface, it is known that the liquid will recede
if its contact angle is smaller than the receding angle θr and will
advance if higher than the advancing angle θa. The plates are de-
scribed by two surfaces – one horizontal in contactwith the bridge,
the other nearly vertical defining the edge – onwhich receding and
advancing angles are considered (as shown in Fig. 2 for the bottom
plate). In this case, the liquid will recede if the contact angle with
the horizontal surface is smaller than θr , and will advance only if
the contact angle on the edge surface is higher than θa. Considering
the horizontal plane as reference, the liquid will remain as long as
the contact is between θr and θm Fig. 2. Moreover, liquid pinning
simplifies the problem because, by avoiding the triple contact line
motion, the no slip condition applies.

2.2. Model

The mechanical model of the axial degree of freedom is
presented in Fig. 3: a Kelvin–Voigt system made up of a spring (of
stiffness k), a damper dashpot (of damping coefficient b) and an
equivalent inertial force (of mass m) connected in parallel. Such a
system can be described by its frequential response and is entirely
defined when the coefficients k, b and m are known.

Typical input/output pairs are the position of an interface, its ve-
locity, its acceleration and its force. The system can be completely
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described by the frequential response of a single input/output pair.
Here, we will characterise the vertical translation considering as
input the displacement of the top interface x(t), and as output the
force exerted on the bottom interface F(t).

The mass appears through inertial effects, which include
acceleration. As a consequence, from a sufficiently-high excitation
frequency onward, inertial effects cannot be neglected.

The gravitational effects can conversely be ignored because the
dimensions involved (750 µm for the radius, around 200 µm for
the gap) are below the capillary length (Lc =


γ

ρg ≈ 1.4 mm for
the liquids used, see Section 4).

The expression of the forces is:

fk(t) = −kx(t)1x (1)
fb(t) = −bẋ(t)1x (2)
fm(t) = −mẍ(t)1x. (3)

The force exerted by the meniscus on the lower interface is
thus:

F(t) = −fk(t) − fb(t) − fm(t). (4)

With periodic input of pulse ω, the system can be rewritten with
phasors giving a transfer function of gain G and phase φ:

G(ω) =


k − ω2m

2
+ ω2b2 (5)

φ(ω) = arctan
ωb

k − ω2m
. (6)

3. Analytical estimation of coefficients

We present an analytical development to approximate the
coefficients of the Kelvin–Voigtmodel describing the liquid bridge.
The aim is to decouple the liquid properties, namely the surface
tension, the viscosity and the density, into the stiffness k, the
damping b and the inertial massm, respectively.

Briefly, the spring force considers the fluid at rest, the damping
force considers only the viscous force driving the fluid, and
the inertial force considers the force due to fluid acceleration.
The Navier–Stokes equation is simplified consequently. The force
applied by the fluid on the bottom interface is then computed, and
the corresponding coefficients are derived. Gravitational effects are
ignored, while inertial ones are contemplated where required.

3.1. Stiffness k

The force generated by a spring is independent of the speed at
which its extremity moves. Therefore, to calculate the stiffness, it
is appropriate to consider the liquid at rest. The pressure outside
the liquid bridge p0 is assumed to be zero.

The geometry and the parameters are presented in Fig. 4. In
addition to the axial symmetry, the geometry presents a symmetry
with respect to the r axis, which further reduces the parameters
in the study. The input parameters are the radius of the plate rb,
the gap (or meniscus height) h, and the edge angle θ . By fixing
these three parameters, the meniscus volume is automatically
determined.

The stiffness k can be deduced from the derivative of the
spring force fk. Without damping nor inertial effect and using
(1) and (4):

k = −
dfk
dh

=
dF
dh

. (7)
Fig. 4. Geometry and parameters for the analytical model.

Since the liquid is at rest, the inner pressure is due to the curvature
of the free interface1:

p = 2Hγ . (8)

The force of the liquid is thus the sumof the Laplace and the surface
tension forces:

F = 2πγ rb sin θ − 2πγ r2bH. (9)

And the stiffness is:

k =
dF
dh

= 2πγ rb cos θ
dθ
dh

− πγ r2b
d(2H)

dh
. (10)

The derivatives are done assuming the volume is constant. With
the same convention1, the local curvature of an analytical axisym-
metric shape r(z) is:

2H(z) = −
r ′′(z)

[1 + r ′2(z)]
3
2

+
1

r(z)

1 + r ′2(z)

. (11)

Unfortunately, there is no analytical solution r(z). Hence, we adopt
the following three strategies:

1. Calculating numerically the shape.
2. Considering a parabolic shape and.
3. Assuming a circular shape.

The first method is the numerical integration of (11) that matches
with boundary conditions.2 The derivative of the curvature and the
edge angle is computed by the finite difference method.

The parabolic and circular models provide analytical relations.
Yet, they do not have a constant curvature on the whole interface
since they are not the solution of (11). The curvature and its
derivative are taken at the neck of the meniscus (z = 0). These
relations are summarised in Table 1.

3.2. Damping coefficient b

The evaluation of the damping coefficient highlights the effect
of the viscosity of the fluid. This state is characterised by a
low Reynolds number. We assume the surface tension to have
a negligible impact compared to the viscous force; in particular,
the variation of pressure due to the surface tension is negligible
compared to the variation of pressure due to viscous forces. The
acceleration term is also neglected, so that the Navier–Stokes
equation contains only pressure and viscous terms.

1 The sign of the curvature depends on the direction of the normal vector. The
convention hereby adopted has the normal pointing outside of the liquid, giving a
positive curvature for a sphere.
2 We used bvp4c inMatlab

R⃝

.
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Table 1
Analytical expressions from the parabolic model and the circular model.

Parabolic model

dθ
dh = − sin θ

30r2b sin2 θ−20rbh sin θ cos θ+3h2 cos2 θ

10rbh2 sin θ−2h3 cos θ

d2H
dh = 2 cot θ


1
h2

+
2

(4rb−h cot θ)2


+

2h
sin2 θ


1
h2

−
2

(4rb−h cot θ)2


dθ
dh

Circular model

dθ
dh = −

4r2b cos4 θ+4rbh sin θ cos3 θ+3h2 cos2 θ−h2 cos4 θ

3h3 sin θ cos θ+4rbh2 cos2 θ+( π
2 −θ)(2h3 cos2 θ−3h3−2rbh sin 2θ)

−

−( π
2 −θ)(3h2 sin θ+4rbh cos θ)

3h3 sin θ cos θ+4rbh2 cos2 θ+( π
2 −θ)(2h3 cos2 θ−3h3−2rbh sin 2θ)

d2H
dh =

2 cos θ

h2
+

2 sin θ
h

dθ
dh +

1−sin θ

(2rb cos θ−h(1−sin θ))2


2 cos θ − 2h dθ

dh



The damping coefficient b can be deduced from the derivative
of the damper force fb. Without spring nor inertial effect and using
(2) and (4):

b = −
dfb
dḣ

=
dF
dḣ

. (12)

The considered geometry is cylindrical. The parameters are
identical to the approximation of the stiffness (Fig. 4), except for
the edge angle which is θ = 90°. Although a velocity field appears
in the meniscus, the deformation induced is small enough to be
ignored, so that the geometry can be considered constant.

The force applied by the liquid on the bottom plate is defined
by the sum of all the constrains on the plate:

F1z =

 
Γb

(−p¯̄I + ¯̄τ) · dS


· 1z (13)

=

 
Γb


−p + 2µ

∂uz

∂z


dS


1z (14)

In the complete review of Engmann et al. [14], the authors
propose some assumptions on the velocity profile of a film of liquid
squeezed by two parallel plates at constant velocity. The vertical
velocity field (i.e. the z component) is assumed to be independent
on r . Then, the starting assumption reads:

u = ur(t, r, z)1r + uz(t, z)1z . (15)

On the fluid/solid interface, the fluid cannot slip. The bottom
interface is fixed and the top interfacemoves at a velocity ḣ(t). The
boundary conditions of the fluid are:

uz


t, −

h
2


= 0 (16)

uz


t,

h
2


= ḣ(t) (17)

ur


t, r, ±

h
2


= 0. (18)

The cylindrical axisymmetric form of the mass conservation
equation and the Navier–Stokes equation gives the following
solution inside the meniscus:

u(t, r, z) = ḣ(t)r

3
z2

h3
−

3
4h


1r

+ ḣ(t)


−2
z3

h3
+

3
2
z
h

+
1
2


1z (19)

p(t, r, z) = 3µḣ(t)
r2

h3
− 6µḣ(t)

z2

h3
+ K(t). (20)
Since it is an approximation, the stress is not balanced at the
interface. We define the constant K(t) of the pressure field by
assuming a zero average stress at the interface:

Γi

−p + ( ¯̄τ · 1r) · 1r dS = 0. (21)

The force computed on the bottom interface using (14) leads to the
damper coefficient:

b =
3π
2

µr4b
h3

+ 2π
µr2b
h

. (22)

When the gap is very small compared to the radius (rb ≫ h), the
zero average stress is similar to a zero pointwise pressure at the
triple line, as used by Engmann. The second term of (22) can then
be neglected, and the relation in [14] is recovered.

3.3. Equivalent mass m

The equivalent mass m can be deduced from the derivative of
the inertial force fm. Without spring nor damping effect and using
(3) and (4):

m = −
dfm
dḧ

=
dF
dḧ

. (23)

The assumption on the geometry is identical to the damping
coefficient case (Fig. 4 with θ = 90°).

We assume that the only property governing the fluid is the
density. The 2D axisymmetric Navier–Stokes equation will only
contain the partial time derivative and the pressure term. For
sinusoidal excitation (h(t) = H sin 2π ft), only the inertial term
contains the squared frequency. The convective term is small
compared to the acceleration term because the amplitude H of the
excitation appears squared (i.e. H2

≪ H).
With increasing inertial effect, the laminar flow changes into a

boundary layer. Outside of the layer, the fluid velocity is uniform.
Asymptotically the layer thickness tends towards zero andwemay
assume that the fluid slips on the solid interface. The assumption
on the fluid is still (15). With the kinematic of the fluid/solid
interfaces, the solution of the simplified axisymmetric equations
gives:

u(t, r, z) = −ḧ(t)
r
2h

1r + ḧ(t)

z
h

+
1
2


1z (24)

p(t, r, z) = ρḧ(t)


r2

4h
−

z2

2h
−

z
2


+ K(t). (25)

The expression of the velocity shows that the radial velocity is
constant on a cylinder defined by r = C and the axial velocity
is constant on a plane z = C . The constant K(t) is defined by
assuming a zero average stress at the interface, as expressed in
(21) and neglecting the viscous stresses. The force exerted on
the bottom interface, (14) without the viscous term, gives an
equivalent mass:

m = πρr2b h


r2b
8h2

−
1
6


. (26)

4. Experimental setup

4.1. Devices

The experimental setup is shown in figure Fig. 5(a). A liquid
bridge was pinned between two small circular plates (diameter:
1.5 mm, height: 170 µm). The bridge was excited by the motion of
the upper plate with a piezoelectric actuator (P-842.40 Physik
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(a) Experimental setup. (b) Connection diagram with actuator and sensors.

Fig. 5. Experimental setup used to excite the liquid bridge.
Table 2
Relevant characteristics of silicon oils. DFxxx means DC200FLUIDxxx.

Ref Liquid Dens. kg/m3 Dyn. visc. Pa s Surf. tens. N/m

OIL1 R47V500 970 0.485 21.1 10−3

OIL2 R47V5000 973 4.865 21.1 10−3

OIL6 DF100 960 0.096 20.9 10−3

OIL7 DF1000 971 0.971 21.2 10−3

Instrumente). To accurately measure the displacement of the
upper plate, we used a CCD laser displacement sensor (LK-G10
Keyence, controller LK-G3001PV), whose laser beam targeted the
top side of the upper plate. A small beam (aluminium alloy, 40 ×

14 × 6.3 mm3) was used as mechanical interface to offset the
upper plate. The dimension of the beam (especially its height)
ensured its first natural frequency (2875 Hz, [21]) to be very far
from the excitation frequency of the meniscus, so that the beam
could be considered rigid. The force exerted by the liquid bridge
on the bottom plate was measured thanks to a highly accurate
micro force sensor (FT-S270 Femto Tools). The maximum
measurable force was 2000 µN with an accuracy of about 5 µN
(the accuracy was actually dependent on the sampling rate of
measurement).

The liquid bridge was filmed by two cameras. Their optical axes
made an angle of 70° (orthogonality was physically not possible
on our setup) in order to control the alignment of the two circular
plates and the shape of the interface. To ensure the alignment of
the plate, the sensorwasmounted on a two-directional linear stage
(DS40-XY Newport). Thewhole setupwasmounted on a vibration
isolating workstation (VH 3030 W-OPT Newport).

Signals generated by both sensors were acquired with a control
and measurement platform (NI PXI 1042 with a NI PXI 6723
for analog outputs and a NI PXI 6224 for digital inputs). The
analog output was used to drive a home-made amplifier [22] that
supplied the piezoelectric actuator. The logical diagram of devices
interconnection is shown in Fig. 5(b).

The liquids used in our experiments were silicon oils whose
characteristics are given in Table 2 (Rhodia (Rhodorsil Oil) and
Dow Corning (DC Fluids)). They had a wide range of viscosities
while density and surface tension were almost constant. All the
experiments were performed in a laboratory environment: room
temperature varied between 24 and 26 °C and monitored relative
air humidity was about 35%.

4.2. Measurement protocol

Thanks to the data acquisition system, measurements were
almost fully automated. For each experiment, the following steps
were adopted:

1. The circular plates were cleaned with acetone and ethanol.
2. A small amount of liquid (around 1 µL) was dropped on the

lower plate.
3. The upper plate was lowered until the contact with the liquid

bridge.
4. The lower plate was accurately positioned and aligned thanks

to the two cameras.
5. The gap was fixed. If the volume needed to be adjusted, the

process restarted from step 2.
6. Two pictures were taken in order to compute the volume.
7. Dynamic parameters (frequency range, delays, amplitude of

actuator) were defined.
8. A systematic acquisition program in Labviewwas used:

(a) An output was generated from the output analog signal of
the piezoelectric driver.

(b) According to the oil viscosity and the actuation frequency, a
delay was inserted to avoid any effect of transient response.

(c) Data were acquired and recorded.
9. Two pictures were taken to control the final state of the

meniscus.

The protocol was restarted from step 8 to successively perform
multiple experiments on the same system, from step 7 to get the
effect of the amplitude of the actuator, from step 5 to change the
gap and from step 1 to change the liquid.

5. Results and discussion

The methodology adopted to validate the results consists of
two steps (see Fig. 6): (i) a comparison between the analytical
approximations of the mechanical parameters derived from the
Navier–Stokes problem and numerical simulations, and (ii) a
comparison between experimental and numerical data. That is,
the numerical simulations act like a buffer between analytical
expressions and experiments. The first comparison supports the
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Fig. 6. Link between analytical, numerical and experimental results.

Fig. 7. Map of reduced stiffness k̂ = k/γ according to the edge angle θ and the
reduced height ĥ = h/r . See zoom in app. Appendix.

simplifications made with the Navier–Stokes equation to obtain
the analytical expressions of k, b andm. For the second comparison,
we directly used experimental data in numerical simulations:
due to experimental errors, the symmetry around the plane
containing the neck (z = 0)was not exactly verified. The numerical
simulations were performed with Comsol Multiphysics 3.5a.

5.1. Analytical stiffness

The relation r(z) (11) was integrated considering the geomet-
rical parameters (radius, height and edge angle). The height was
increased by 0.1%, keeping the volume and the radius constant,
giving a new curvature and a new edge angle. Then the numeri-
cal derivative was performed.

We present these results as k-maps. These maps represent the
reduced stiffness k̂ = k/γ , according to the edge angle and the
reduced height (i.e. form factor) ĥ = h/r . The construction on the
k-maps is built on a mesh of uniformly spaced points (600 points
for θ and 2000 points for ĥ). Some extra points were added at small
gaps (uniformly logarithmically spaced). Fig. 7 shows the reduced
stiffness computed by numerical integration. Amore readablemap
is given in app. Appendix.

The relative errors on the parabolic and circular models are
shown in Fig. 8(a) and (b) (computed with (10) and equations
from Table 1), and prove that the circular approximation is more
accurate. Special caremust be used in the evaluation of the relative
error near the region where the stiffness is zero: by definition,
any small difference of value produces an error tending to infinity.
The error tends to zero when the shape approaches a cylinder.
The circular model gives an error below 30% for form factor
ĥ < 0.1.

The stiffness coefficient k is not always positive. As illustrated in
Fig. 9, when the gap increases, the meniscus curvature decreases,
reducing the inner pressure. The second term of the derivative of
the force (10) is always positive. On the contrary, the sign of the
contribution of the surface tension force, expressed in the first
term of (10), is changing: the edge angle always decreases as the
gap increases. For angles below 90° the stiffness is negative, while
bigger angles give a positive stiffness.

Fig. 10(a) represents a part of the map of the reduced force
F̂ = F/rγ according to the edge angle θ and the reduced height
ĥ. The bold line is the evolution of the θ when the gap increases
at constant volume. The evolution of the force along this curve is
represented in Fig. 10(b) (plain line). As the gap increases, the force
reaches amaximumand begins to decrease. The derivative (i.e., the
stiffness) is therefore negative (dashed line).

Consequently, for certain configurations the meniscus can be
considered as an anti-spring. Anti-springs are unstable because
the force tends to deviate from the equilibrium state. However, if
the anti-spring is mechanically constrained – as in the case of a
meniscus – it is not unstable: the gap is fixed externally, whatever
the force.

5.2. Analytical and numerical comparison

The first set of experiments considers a fully-symmetric case:
axisymmetry and top-down symmetry. For each model, we
compared the gain curves. We plot the asymptotes for each states
as:

logGk(ω) = log k (27)
logGb(ω) = logω + log b (28)
logGm(ω) = 2 logω + logm. (29)
(a) Relative error on the reduced stiffness computed from
parabolic model (k̂pm − k̂)/k̂ according to the edge angle θ

and the reduced height ĥ = h/r .

(b) Relative error on the reduced stiffness computed from
circular model (k̂cm − k̂)/k̂ according to the edge angle θ

and the reduced height ĥ = h/r .

Fig. 8. Relative error for analytical models in logarithmic scale.
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(a) When θ < 90°, the Laplace
force increases while the surface
tension force decreases.

(b) When θ > 90°, both the Laplace force
and the surface tension force increase.

Fig. 9. Evolution of edge angle and inner pressure as the gap increases at constant volume.
(a) Map of the reduced force F̂ = F/rγ according to the edge angle θ and
the reduced height ĥ = h/r . The dashed line is a constant volume line.

(b) Evolution of the reduced force and reduced stiffness along the constant
volume line, in the direction of increasing gap.

Fig. 10. Illustration of origin of negative stiffness.
Table 3
Parameter of numerical simulations.

Parameter Symbol Value

Radius rb 0.75 mm
Gap h 0.15, 0.25 mm
Edge angle θ 45°, 90°, 135°
Viscosity µ 0.001–1 Pa s
Surface tension γ 20 mN/m
Frequency f 1 Hz to 10 kHz

The parameters of these simulations are summarised in Table 3. It
defines the numerical experimental space studied, made up of all
the combinations of the parameters. The parameters chosen cover
a wide range of Reynolds numbers and capillary numbers:

Re =
ρfh2

µ
4 10−5

→ 400 (30)

Ca =
µfh
γ

10−5
→ 100. (31)

The Bode curves (Fig. 11) show that the validity of the
assumptions and simplifications made on the Navier–Stokes is
acceptable within the range in which the term is not negligible.
For example, at very low frequency the estimation of the inertial
contribution is erroneous because the assumption on the velocity
profile is not valid. However the term is completely negligible with
respect to the stiffness.

5.3. Experimental and numerical comparison

As already mentioned, during each experiment the geometry
of the liquid was controlled by two cameras, before and after the
run (4 pictures per experiments). Examples of pictures are shown
in Fig. 12. The liquid bridge was controlled four times. Geometric
measurements are reported in Table A.4 (app. Appendix). Each
experiment consists on a frequential scan of 80 points.
Numerical simulationswere performed using the parameters of
each geometric measurement. Data used are the top and bottom
radius, the gap and the top edge angle. The bottom edge angle
could not be used for consistency of the initial parameters of the
2D axisymmetric shape at constant curvature. The Bode curves of
representative experiments are shown in Fig. 13.

The results displayed in Fig. 13 are conclusive. All experimental
data points are in between the numerical curves. The sign of the
stiffness is well predicted, and the data show good repeatability.

However, the variation of the geometric parameters gathered
from image analysis produces an important dispersion of the
stiffness. The dispersionmaybe explained for several reasons. First,
the positioning error (mainly the tilt in both horizontal directions)
gives slightly different profile of the liquid bridge for both cameras.
Second, there is a small hysteresis inherent to the piezo actuator.
Therefore, the gap and the edge angles may change accordingly.
Finally, there is a small amount of liquid that is lost during the
experiments, due to flooding outside the pad (in case the pinning
was not perfect) or to evaporation.

These geometric errors are less visible on the b-state. Indeed,
the equivalent damping depends on the volume that is relatively
less sensitive to a variation of the free interface. We may see
on experiments 11 and 12 (Fig. 13) that for high frequency, the
curve goes under the linear asymptote. This is due to the sensor
saturation. Consequently, the inertial state could not be observed
experimentally because the level of force was too high.

6. Conclusions and further works

In this paper, we characterised the behaviour of an axisymmet-
ric liquid bridgeunder small vertical oscillations. Themeniscuswas
modelled by a Kelvin–Voigtmodel, consisting of a spring, a damper
and a mass in parallel. The paper proposed an abacus for the stiff-
ness, and analytical expressions for the stiffness, the damping and
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Fig. 11. Gain curves.
(a) Picture from camera 1. (b) Picture from camera 2.

Fig. 12. Picture from cameras. The diameter of the pad is 1.5 mm.
the inertial coefficients. The validation was provided through nu-
merical simulations and experimental data. The numerical simula-
tions acted as a buffer for results validation: they were compared
first with analytical approximations (with amirror symmetry with
respect to the plane containing the neck of the meniscus) and then
with experiments.

We showed that it is possible to characterise the meniscus by
geometrical andphysical parameters of liquids, andwithout down-
scaling the system to microscopic dimension. The proposed ana-
lytical laws were based on simplifications of the 2D axisymmetric
Navier–Stokes equation. They can be used to quickly estimate the
order ofmagnitude of the different parameters k, b,m. The first one
involves the knowledge of the free liquid surface while the latter
are based on the liquid volume. Consequently, the parameter k is
more difficult to evaluate: although it is a good approximation, the
experimental values of the edge angle and of the curvature of the
free surface may be rather difficult to estimate.
The results showed excellent agreement between analytical
and numerical models, validating the assumptions on the state of
the fluid (static flow for spring state, viscous flow for the damping
state and inertial flow for the inertial state). In this case, the
characterisation of the inertial effects differs from the Reynolds
number since it is usually the convective term (ρu2/L) that is
considered. In the vibration of the meniscus, the inertial term
is related to the acceleration term (ρu̇). Hence an alternative
Reynolds number might be defined by the ratio of the inertial
forces and the viscous forces:

Reinertial =
ρV u̇
µuL

=
ρVω

µL
. (32)

The results showed good agreement between experimental
data and numerical simulation, although measurements were
difficult to achieve. The present experimental bench did not allow
us to inspect the inertial state experimentally since the needed
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Fig. 13. Gain and phase curves for experiments. The circle represents experimental data, the square the individual parameters and the triangle the mean value of the
geometric parameters. Experimental parameters are given in Table A.4.
input frequencies are very high and forces generated are too large
for the sensor hereby adopted.

Finally, to complete the dynamic description of the liquid bridge
investigations of the response along the other degrees of freedom
are required. In this respect, we earlier reported the study of the
lateral oscillations of the liquidmeniscus in [20]. Still, further work
is needed.
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See Fig. 14.
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Fig. 14. Big size abacus (Zoom of Fig. 7).
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Table A.4
Experimental results fromboth cameras. Pictures 1 and 2have been recorded before
the experiment and pictures 3 and 4 have been recorded after.

Experiment Picture Bottom
radius
[mm]

Top
radius
[mm]

Bottom
angle
[°]

Top
angle
[mm]

Gap
[mm]

Volume
[mm3

]

1 1 0.717 0.696 15.9 23.6 0.284 0.354
1 2 0.735 0.721 15.3 20.1 0.298 0.386
1 3 0.713 0.703 18.6 22.6 0.262 0.335
1 4 0.738 0.732 13.9 16.2 0.281 0.374
1 Mean 0.726 0.713 15.9 20.6 0.282 0.362

2 1 0.747 0.747 43.2 43.2 0.218 0.345
2 2 0.77 0.746 36 46.7 0.242 0.391
2 3 0.736 0.722 18.6 24.7 0.231 0.325
2 4 0.747 0.729 20.2 28.1 0.235 0.342
2 Mean 0.75 0.736 29.5 35.7 0.231 0.351

3 1 0.756 0.746 28.8 32 0.323 0.473
3 2 0.745 0.748 34.7 33.6 0.317 0.463
3 3 0.755 0.738 21.8 27.3 0.319 0.449
3 4 0.767 0.755 21.4 25.2 0.322 0.468
3 Mean 0.756 0.747 26.7 29.5 0.32 0.463

4 1 0.749 0.751 45.8 45.2 0.284 0.446
4 2 0.755 0.752 46 47.4 0.28 0.449
4 3 0.755 0.746 24.5 27.9 0.28 0.412
4 4 0.758 0.735 22.4 31.1 0.273 0.4
4 Mean 0.754 0.746 34.7 37.9 0.279 0.427

5 1 0.75 0.751 50.7 50.1 0.255 0.412
5 2 0.76 0.752 46.5 50 0.246 0.404
5 3 0.751 0.75 41.6 42 0.251 0.396
5 4 0.766 0.751 36.8 43.3 0.243 0.393
5 Mean 0.757 0.751 43.9 46.3 0.249 0.401

7 1 0.743 0.747 27.4 24.9 0.158 0.243
7 2 0.752 0.748 24.2 27.1 0.16 0.255
7 3 0.744 0.744 40.8 40.8 0.155 0.25
7 4 0.758 0.752 43 47.2 0.163 0.271
7 Mean 0.749 0.747 33.9 35 0.159 0.255

8 1 0.747 0.741 41 42 0.554 0.743
8 2 0.754 0.751 40.1 40.6 0.562 0.764
8 3 0.747 0.747 40 40 0.569 0.756
8 4 0.754 0.746 39.1 40.5 0.575 0.768
8 Mean 0.75 0.746 40.1 40.8 0.565 0.758

9 1 0.748 0.744 65.5 66.3 0.479 0.758
9 2 0.765 0.754 65.5 67.8 0.485 0.8
9 3 0.745 0.744 52.1 52.3 0.482 0.714
9 4 0.752 0.754 50.7 50.3 0.485 0.727
9 Mean 0.752 0.749 58.5 59.2 0.483 0.75

10 1 0.743 0.75 25.4 22.4 0.26 0.381
10 2 0.766 0.76 22.9 25.3 0.27 0.412
10 3 0.748 0.745 29.8 30.8 0.266 0.396
10 4 0.748 0.754 31.6 29.5 0.269 0.406
10 Mean 0.751 0.752 27.4 27 0.266 0.399

11 1 0.734 0.751 30.5 24.6 0.293 0.422
11 2 0.746 0.747 27.2 27.1 0.297 0.43
11 3 0.739 0.752 32.9 28.1 0.295 0.432
11 4 0.755 0.75 27 28.5 0.3 0.443
11 Mean 0.743 0.75 29.4 27.1 0.296 0.432

12 1 0.753 0.757 11 9.83 0.334 0.435
12 2 0.746 0.759 16 12.4 0.343 0.451
Table A.4 (continued)

Experiment Picture Bottom
radius
[mm]

Top
radius
[mm]

Bottom
angle
[°]

Top
angle
[mm]

Gap
[mm]

Volume
[mm3

]

12 3 0.746 0.761 15.9 11.7 0.335 0.445
12 4 0.744 0.764 17.7 12.2 0.345 0.458
12 Mean 0.747 0.76 15.2 11.5 0.339 0.447

References

[1] P.-G. de Gennes, F. Brochart-Wyard, D. Quéré, Gouttes, bulles, perles et ondes,
Belin, 2002.

[2] P. Lambert, Capillary Forces in Microassembly: Modeling, Simulation,
Experiments, and Case Study, Microtechnology and MEMS, Springer, 2007.

[3] M. Mastrangeli, J.-B. Valsamis, C.V. Hoof, J.-P. Celis, P. Lambert, Lateral
capillary forces of cylindrical fluid menisci: a comprehensive quasi-static
study, J. Micromech. Microeng. 20 (7) (2010) http://dx.doi.org/10.1088/0960-
1317/20/7/075041. 075041 (13 p).

[4] W. Lin, S.K. Patra, Y.C. Lee, Design of solder joints for self-aligned
optoelectronic assemblies, IEEE Trans. Adv. Packaging 18 (3) (1995) 543–551.

[5] S.K. Patra, Y.C. Lee, Quasi-static modeling of the self-alignment mechanism in
flip-chip soldering—part i: single solder joint, J. Electron. Packaging 113 (4)
(1991) 337–342.

[6] S.K. Patra, Y.C. Lee, Modeling of self-alignment mechanism in flip-chip
soldering—part ii: multichip solder joints, in: Electronic Components and
Technology Conference, 1991, Proceedings., 41st, 1991.

[7] M. Mastrangeli, W. Ruythooren, C.V. Hoof, J.-P. Celis, Conformal dip-coating of
patterned surfaces for capillary die-to-substrate self-assembly, J. Micromech.
Microeng. 19 (4) (2009) 12.

[8] M. Mastrangeli, S. Abbasi, C. Varel, C.V. Hoof, J.-P. Celis, K. Bohringer,
Self-assembly from milli- to nanoscales: methods and applications,
J MicromechMicroeng 19 (8) (2009) 083001. http://dx.doi.org/10.1088/0960-
1317/19/8/083001.

[9] K. Brakke, The surface evolver, Exp. Math. 1 (2) (1992) 141–165.
[10] J. Berthier, K. Brakke, F. Grossi, L. Sanchez, L.D. Cioccio, Self-alignment of silicon

chips on wafers: a capillary approach, J. Appl. Phys. 108 (2010) 054905.
[11] N. van Veen, Analytical derivation of the self-alignment motion of flip chip

soldered components, J. Electron. Packaging 121 (1999) 116–121.
[12] M.-H. Meurisse, M. Querry, Squeeze effects in a flat liquid bridge between

parallel solid surfaces, J. Tribology 128 (3) (2006) 575–584.
[13] D. Cheneler, M.C. Ward, M.J. Adams, Z. Zhang, Measurement of dynamic

properties of small volumes of fluid using mems, Sens. Actuators, B 130 (2)
(2008) 701–706.

[14] J. Engmann, C. Servais, A.S. Burbidge, Squeeze flow theory and applications to
rheometry: a review, J. Non-Newtonian Fluid Mech. 132 (1–3) (2005) 1–27.

[15] O. Pitois, P. Moucheront, X. Chateau, Liquid bridge between two moving
spheres: an experimental study of viscosity effects, J. Colloid Interface Sci. 231
(1) (2000) 26–31.

[16] N. Boufercha, J. Sägebarth, M. Burgard, N. Othman, D. Schlenker, W. Schäfer, H.
Sandmaier, Micro-assembly with fluids, MST/NEWS 2/08, 2008, pp. 29–30.

[17] H. Lu, C. Bailey, Dynamic analysis of flip-chip self alignment, IEEE Trans. Adv.
Packaging 28 (3) (2005) 475–480.

[18] J.M. Montanero, Linear dynamics of axisymmetric liquid bridges, Eur. J. Mech.
B 22 (2003) 167–178.

[19] J. Montanero, Theoretical analysis of the vibration of axisymmetric liquid
bridges of arbitrary shape, Theoret. Comput. Fluid Dynamics 16 (2003)
171–186.

[20] P. Lambert, M. Mastrangeli, J.-B. Valsamis, G. Degrez, Spectral analysis and
experimental study of lateral capillary dynamics (for flip-chip applications),
Microfluid Nanofluid. 9 (4–5) (2010) 797–807.

[21] F. Dionnet, Télé-micro-manipulation par adhésion, Ph.D. Thesis, Université
Pierre et Marie Curie, Paris, 2005.

[22] V. Vandaele, Contactless handling for micro-assembly: acoustic levitation,
Ph.D. Thesis, Université libre de Bruxelles, Brussels, Belgium, 2008.

http://dx.doi.org/doi:10.1088/0960-1317/20/7/075041
http://dx.doi.org/doi:10.1088/0960-1317/20/7/075041
http://dx.doi.org/doi:10.1088/0960-1317/20/7/075041
http://dx.doi.org/doi:10.1088/0960-1317/19/8/083001
http://dx.doi.org/doi:10.1088/0960-1317/19/8/083001
http://dx.doi.org/doi:10.1088/0960-1317/19/8/083001

	Vertical excitation of axisymmetric liquid bridges
	Introduction
	Liquid bridge model
	Edge angle
	Model

	Analytical estimation of coefficients
	Stiffness  k 
	Damping coefficient  b 
	Equivalent mass  m 

	Experimental setup
	Devices
	Measurement protocol

	Results and discussion
	Analytical stiffness
	Analytical and numerical comparison
	Experimental and numerical comparison

	Conclusions and further works
	Acknowledgements
	Appendix
	References


